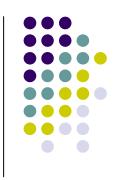
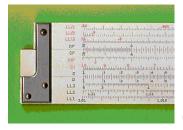

コンピュータ概論 第1回

授業導入


授業導入

- コンピュータとは?
- Computer = 計算機
 - compute:動詞「計算する」
 - computer:「計算するモノ」
 - 算盤(そろばん)
 - 計算尺
 - 電卓
 - コンピュータ



コンピュータ

- 単なる計算の道具ではない
 - 計算を行う
 - 算盤, 計算尺, 電卓, コンピュータ
 - 計算を高速に行う
 - 電卓, コンピュータ
 - 大量のデータを記憶, 処理する
 - コンピュータ
 - さまざまなデータを処理する
 - マルチメディア対応コンピュータ
 - 相互のネットワークを活用する
 - コンピュータネットワーク

コンピュータの歴史

大昔

有史

• 15世紀頃

• 18世紀頃

• 19世紀頃

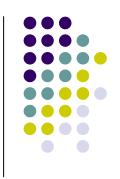
• 20世紀初頭

指、石、棒

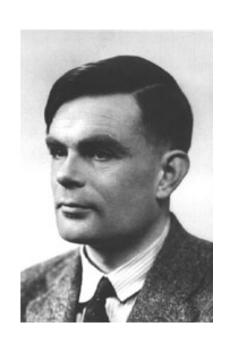
そろばん

計算尺

歯車式計算機


機械式計算機

ホレリスの統計機

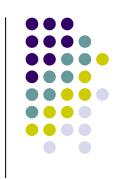

コンピュータ革命

- 20世紀初頭まで
 - 指計算の延長
- 1936年 A.チューリング
 - チューリングマシン:計算機械理論確立
- 1937年 C.シャノン
 - 2進数:人間とは違う計算方法の提案
- 1945年 V.ノイマン
 - プログラム内蔵方式:ソフトウェアの分離

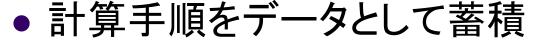
チューリングマシン

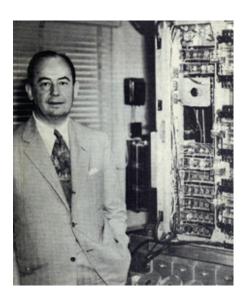
- 計算を行う機械を定義
 - 無限の長さのテープ
 - 文字列の置き換え機能

理論上は現在のコンピュータ と同じ

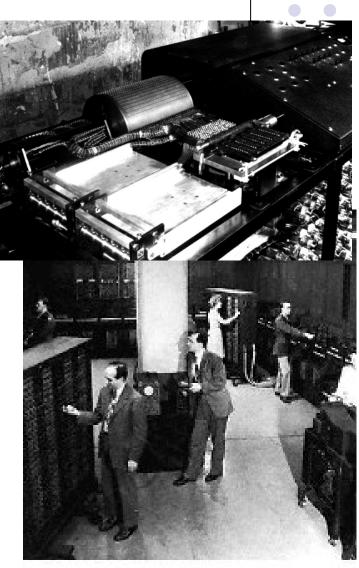


2進数計算機


- 10進数計算の限界
 - 精密機械加工には限界
- 10進数でなく2進数で計算
 - スイッチを組み合わせれば計算可能
 - 装置作成も簡単


ノイマン型コンピュータ

- コンピュータは回路に組まれた計算を実行
 - 別計算を行うには組み直しが必要

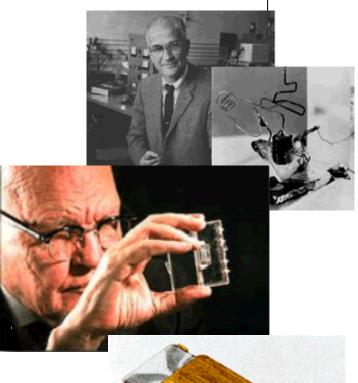

- プログラム内蔵型コンピュータ
- 計算手順は一つ一つ順に行う
- 計算手順を入れ替えれば別の計算が可能

コンピュータの歴史

- 1939 ABCマシン試作
 - 電子式コンピュータ
 - 29変数連立1次方程式
 - コンデンサによる記憶装置
 - 実用はされず(正しく動作せず)
- 1946 ENIAC登場
 - 電子式コンピュータ
 - 毎秒5000回の加算
 - 微分方程式
 - 消費電力140KW 真空管18000本
 - 80立方メートル 重量30トン

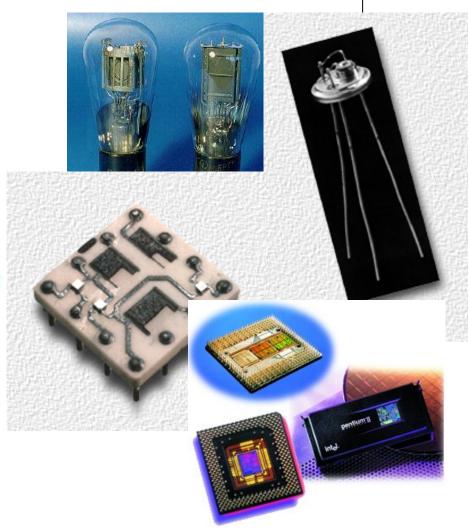
コンピュータを支える技術

スイッチング素子


- 計算を行うために必要な電子素子
- 記憶装置にも利用可能
- リレー
 - スピードが遅い
 - 機械式のため信頼性が低い
- 真空管
 - 形状や消費電力が大きい
 - 信頼性が低い

コンピュータを支える技術

- トランジスタ
 - 1947 年 ATT ベル研究所にて発明
 - ショックレー博士ら3人
 - 小型, 小電力, 高信頼性
- 集積回路 Integrated Circuit
 - 複数の素子を小基盤に集積する技術
 - キルビー博士(TI社)らによる発明
- 大規模集積回路 Large Scale IC
 - 半導体ウェハースの上に複数のトランジスタを形成



スイッチング素子の歴史

- 1 真空管
- 1 トランジスタ
- 100 IC
- 10000 LSI
- 100000~ VLSI

商用コンピュータ

会計,統計の計算

- UNIVAC (1951)
 - 世界初の商用 コンピュータ
- IBM 701 (1953)
 - 大企業や政府に普及

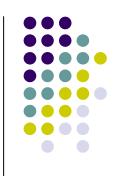
- IBM 7070 (1958)
 - トランジスタを使用 第2世 代コンピュータ
- IBM 360 (1964)
 - 汎用計算機 第3世代コン ピュータ

PC (パーソナル・コンピュータ)

- Apple-II(1977)
- IBM PC (1981)
- NEC 9801 (1982)
- Macintosh 128K(1984)
- IBM PC-AT (1984)
 - AT 互換機
 - DOS/V

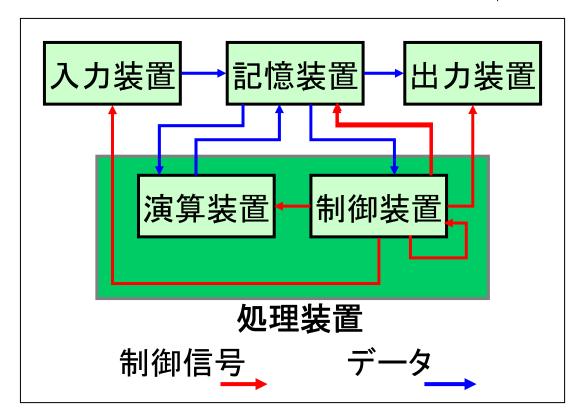
- 現在のコンピュータの構成
 - ハードウエア
 - コンピュータという物体
 - ソフトウエア
 - コンピュータの仕事
- 両者の関係
 - 身体と魂(心)のような関係
 - 身体:ハードウエア
 - 魂:ソフトウエア

単なる機械


ソフトウェアが無ければ 何の動作もしない。 『ソフト無ければただの箱』

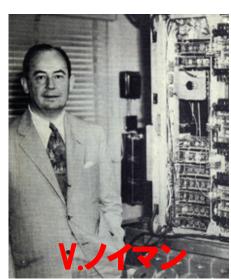
単なる情報

ハードウェアが無ければ 全く使えない。 『ハード無ければただの円盤』

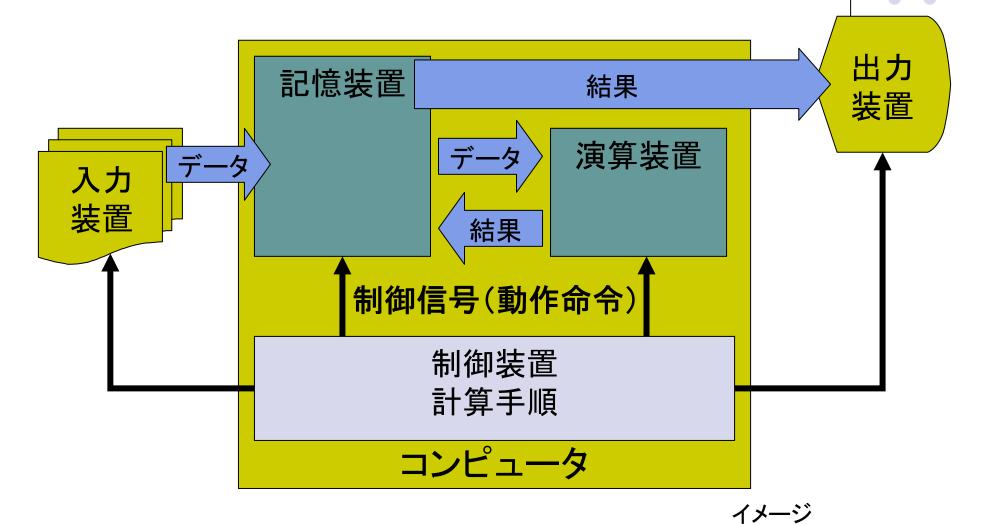


- 5大装置
 - 入力装置
 - 出力装置
 - 記憶装置

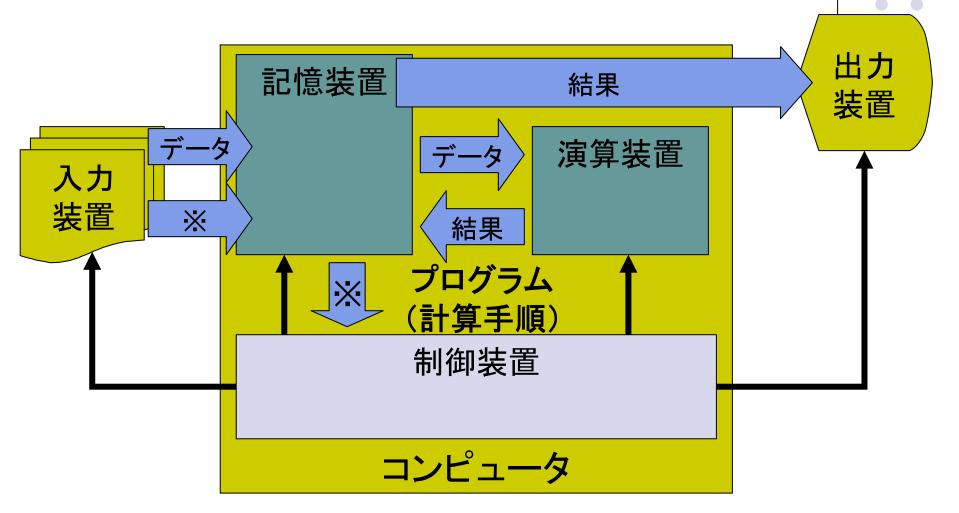
演算装置

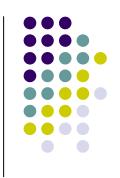

制御装置

処理装置

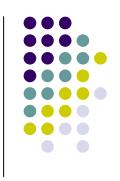


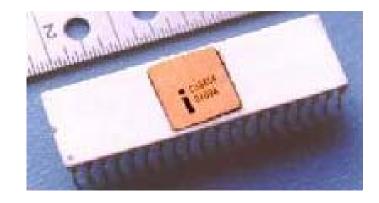
ノイマン型コンピュータ

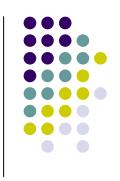

- 以前のコンピュータ(外部プログラム方式)は 回路に組まれた計算を実行
 - 連立方程式解析用回路
 - 微分方程式解析用回路
 - 弾道計算用回路
 - 別計算を行うには組み直しが必要
- 計算手順をデータとして蓄積
 - プログラム内蔵方式コンピュータ
 - 計算手順は一つ一つ順に行う
 - 計算手順を入れ替えれば別の計算が可能



外部プログラム方式

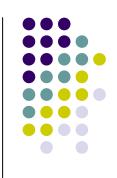

プログラム内蔵型コンピュータ



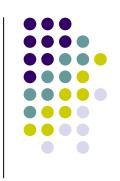

- 処理装置(Processing Unit)
 - コンピュータの中枢部(知能)
 - 演算装置
 - 制御装置
 - マイクロプロセッサ
 - 1つのチップ(LSIなど)に集積された処理装置
 - CPU(中央演算処理装置)
 - MPU(マイクロ演算処理装置)
 - Pentium、SPARC、PowerPCなどの製品が有名

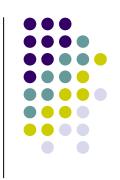
CPUの変遷

- CPU(MPU)
 - Intel 4004 : 世界初のマイクロプロセッサ
 - Intel 8008,8080, 8085 : 8 bit CPU
 - Zilog Z80 :代表的な 8 bit CPU
 - Intel 8086 : 16 bit CPU
 - Intel 80x86
 - Intel Pentium

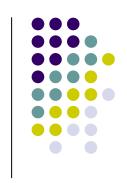


- 記憶装置
 - コンピュータの記憶部(知識)
 - 主記憶装置(メモリ)
 - 処理装置と直接データのやり取り
 - 通常はLSIチップ
 - RAM(読み書き可能)揮発性(電源が切れると消える)
 - ROM(読み出し専用)不揮発性(起動時に使用)
 - 外部記憶装置(補助記憶装置)
 - 主記憶装置に収まりきらないデータの記憶
 - 大容量で安価


- 入力装置
 - データの入り口
 - ・キーボード
 - ユーザの命令を文字で与えるための装置
 - ・マウス
 - ユーザの命令を画像の操作で与えるための装置
 - タブレット
 - マウスと同様の機能を持っている装置でペン型の 機器で操作する
 - 外部記憶装置
 - 入力装置と考える場合もある
 - フロッピーディスク
 - CD-ROM
 - DVD


- 出力装置
 - 結果の出口
 - ディスプレイ
 - 画面に結果を表示する装置
 - ・プリンタ
 - 結果を印刷する装置
 - 外部記憶装置
 - 出力装置と考える場合もある
 - フロッピーディスク
 - CD-R/W
 - DVD-R±/DVD-RAM

コンピュータのソフトウェア


- コンピュータが必要とする情報
 - 実体が無い
 - 媒体に記録されることで存在
 - 半導体メモリ(主記憶装置など)
 - 磁気ディスク(外部記憶など)
 - 光ディスク
- 記憶媒体(CD-ROMなど)そのものをソフトウェアと呼ぶのは間違い

コンピュータのソフトウェア

- ソフトウェアの分類
 - プログラムコンピュータの動作命令
 - OS(オペレーティングシステム)
 - アプリケーション
 - データ 計算などに用いる情報
 - 数値、文字、画像、音声など

プログラム

- コンピュータを動作させる命令
 - CPUの動作命令の集まり
 - 動作手順も規定(program=計画表)
 - CPUは命令を逐次(1つ1つ順番に)実行
- プログラムが無ければコンピュータは動作しない
 - CPUが動けばコンピュータが動く

OS

- オペレーティングシステム(基本ソフト)
 - WindowsやLinuxが有名
 - コンピュータの基本的な動作を提供
 - ハードウェアの制御
 - プログラムの動作制御
 - データの管理・制御

など

アプリケーションプログラム

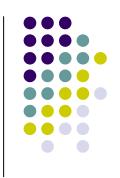
- アプリケーション(応用ソフト)
 - ワープロやブラウザなど
 - OSが提供していないような応用的な利用を 可能にするプログラム
 - 基本的な部分はOSの機能を利用
 - ファイルの管理
 - ネットワーク通信
 - 画面表示

など

コンピュータが万能文具として利用可能なのは アプリケーションプログラムのおかげ


データ

- プログラムによって利用される情報
 - データだけでは役に立たない
- マルチメディアデータ
 - 数値、文字だけでなく画像や音声も
 - デジタルカメラの画像
 - CDの楽曲


など

データとプログラムの違い

- プログラムはデータの一種
 - CPUの動作プログラムであればプログラム
 - CPUが実行できないプログラムはプログラムとはい えない
 - MacのプログラムはWindowsでは実行できない
 - 昔のWindowsでは今のWindowsのプログラムを実行できない

おさらい

- コンピュータの歴史
 - CalculatorからComputerへ
 - チューリング、シャノン、ノイマンの功績
- コンピュータの動作原理
 - ハードウェアについて
 - ソフトウェアについて